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Based opt a numerical  solution, by  the f ini te-volume method, o f  two-dimensional Reynolds equations 

that are closed using Menter ' s  two-parameter  turbulence model attd on physical modeling in a wind 

tunnel the authors analyze f l o w  in a channel with a cylindrical vortex cell (?/" circular cross section. 

1. As is known, the problem of  controlling flow along bodies is among pressing fundamental problems 
of aerohydromechanics and attracts increased attention of researchers. In this connection, the cycle of  works of 
the last two years II-5] on an efficient method of organizing flow using so-called trapped vortices or vortex 

cells mounted in the contour of the body seems very interesting. 
The creation of momentum within vortex cells, in particular, due to the suction of a fluid through a 

wall of  a central body or the rotation of  a cylinder, makes it possible to change substantially the regime of 
flow along the object considered. It should be noted that wall layers are acted upon in comparatively small- 
scale regions. As a result, it seems possible to ensure unseparated flow along a thick profile (in a wide range 

p p 

of the Reynolds number) and a plate (with suppression of the Karman vortex street) and, as a consequence, to 
reduce the drag of bodies, in particular, of  a circular cylinder, and to attain a high (of the order of several 

tens) lilt-drag ratio for the profile. 
To solve the indicated problems, an efficient multiblock computational methodology is developed that 

is based on employing a factorized algorithm in combination with multistage and multiblock intersecting grids. 
This strategy is partially substantiated in considering test problems, including the problem of steady and un- 
steady laminar flow of a viscous incompressible fluid along a circular cylinder. 

With the aim of testing the developed methodology for a turbulent regime of flow along bodies we 

pertormed a complex numerical and experimental study of flow in a plane-parallel channel with a circular vor- 
tex cell on one of the walls. Undoubtedly, this investigation, apart from being methodological in nature, is also 
of substantative significance. Widely known are calculational and experimental works on analysis of circulating 
flow in rectangularly shaped trenches, in particular, in a square cavern [6-7]. However caverns of circular 
shape have been considered extremely rarely (see, for example, [8]) and most often in a simplified formulation, 
in particular, in motion of a moving boundary. In this work, not only a comparative analysis of calculational 

and experimental results seems interesting but also analysis of  the effect of  the thickness of the boundary layer 
that develops along the channel walls on the intensity of  the vortex flow. 

2. Flow in a channel with a transverse cylindrical hollow is investigated experimentally at the Institute 

of Mechanics of Moscow State University on a setup that is a small-sized direct-action wind tunnel in which 
the air flow is produced by a forced-draught fan. To equalize and damp the flow, in front of the nozzle we 
placed an elongated forechamber, in which a honeycomb and a grid for damping disturbances are installed. The 
forechamber is smoothly integrated with a planar profiled subsonic nozzle with a compression ratio of 4.0 that 
is connected to the setup's working channel manufactured of organic glass and having a rectangular cross sec- 
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tion of height H = 0.05 m and width 1 = 0.08 m. On the lower wall of the channel, plug-in units with different 
cylindrical hollows are installed. In operation, the cross section of the hollow was a circle with a diameter of  
0.06 m, and the length of the inlet section L = 0.052 m was taken as the characteristic length. The horizontal 
walls of  the channel can diverge smoothly by an angle of 10 °, thus enabling us to produce flows with the 

required longitudinal pressure gradient. The fan and the nozzle provide a uniform flow with a head of 0.2-1.5 
kPa at the inlet to the working channel, which corresponds to regimes with flow velocities U in the range of 
15-50 m/see (U is selected as the characteristic velocity). 

Pressure was measured with tilted micromanometers. When the static pressure on the channel walls 
was determined, a 48-channel automatic pneumocommutator of  the Central Aerohydrodynamics Institute was 
used |or  connecting drainage points. The total and static pressures in the flow and near the surfaces in different 
cross sections of the channel were measured with pneumoprobes moved by a traverse gear with a micrometer 
screw (the vernier reading is 0.05 mm). 

The mutual arrangement of the channel cross sections in which the measurements were pertbrmed is 
determined by a Cartesian coordinate system where the lower wall of the channel is located in the plane y = 

0, the lateral walls correspond to the planes z = -~z0 (2z0 = I /L  = 1.54), the x axis is directed streamwise, and 
the left edge of the hollow passes through the origin of coordinates. 

The measurements of the static pressure in three cross sections of the channel (xj = 1.06, x~ = 0.5, and 
x3 = 1.96) permitted the conclusions: 

a) of a weak effect of the channel 's  lateral walls that can be disregarded for cross sections z < 0.8z 0, as 
demonstrated by the practically constant pressure over the channel width measured using drainage holes on the 
lower wall of the channel and at the bottom of  the cylindrical hollow; 

b) of  a practically constant static pressure along the channel height in the cross sections ahead of the 
hollow and behind it; 

c) of the presence of intense vortex flow in the cylindrical hollow, as demonstrated by the behavior of  
the static pressure on its lateral wall (an example is given below in Fig. 3c). 

The first of the indicated properties of  the flow was decisive in selecting a two-parameter computa- 
tional model. 

The relative magnitude of longitudinal-velocity pulsations at the inlet to and the outlet from the work- 
ing channel of the setup was measured by a DISA constant-resistance hot-wire anemometer (model A55). 

Flow in the cylindrical hollow and its vicinity was visualized using the method of a hot wire (the 
method of smoke jets). A thin Nichrome filament 0.3-0.5 mm in diameter heated by an electric current was 
installed at the center of the cylindrical hollow in the vertical plane that was normal to the channel's longitu- 
dinal axis. Smoke was formed by combustion of an oil flowing down along the hot filament. The oil was fed 
through an upper current duct that was a copper tube 1 mm in diameter, in which the Nichrome filament ran. 
The intensity (optical density) of  the smoke,  dependent on the filament temperature, could be controlled 
smoothly. For observation of the flow pattern the required illumination (lor example, a light plane) was cre- 
ated, and registration was performed using video tape recording. 

Figure la presents a frame from a photogram of the flow obtained from a video tape lbr a velocity of  
the incoming flow U = 36 m/sec and a Reynolds number Re = 1.34.105, which is calculated from the distance 
L between the hollow's edges. The process of  washing out of  the smoke, which leads to almost unitbrm dis- 

tribution of it in the cavity, indicates a turbulent regime of  internal flow. We can clearly trace a separating 
surface formed when the external and internal flows meet near the leading edge of the hollow, which is visu- 
alized in the photographs as a boundary that separates the region filled with smoke from the external flow and 
runs between the edges. As the trailing edge is approached, this line becomes more washed out, which indi- 
cates an increased vorticity in the mixing layer. 

On the whole, in the course of  the experimental investigations we obtained data on the properties of  
gasdynamic flows near a planar wall with a cylindrical vortex cell lor Reynolds numbers in the range of 
104-1.37.105 and for a turbulence level of  0.015 in the incoming flow. In spite of  a pronounced turbulent char- 
acter of the flow, in the averaged flow we can single out elements of a classical schematization of the sepa- 
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Fig. 1. Smoke visualization of the circulating flow in a circular cavern on 
the wall of a plane-parallel channel with a velocity of the incoming flow 
U = 36 m/sec and a Reynolds number Re = 1.34-10 5 (a) and a fragment 
of the multiblock computational grid (b). 

rated-flow structure: shear and boundary layers and a core of return flow with constant vorticity. Inside the 
cylindrical cell, we observe, on the average, stable flow that is characterized by the presence of one large-scale 
vortex separated from the external flow by a shear mixing layer. The center of  the vortex is shifted from the 
center of the circle and is localized to the vicinity of  the "center of the area" of  the cross section of the cell. 
The minimum pressure on the cell walls is attained at the point of maximum depth. The bend of the center 
streamlines and the transverse pressure gradient (in the region of the flow just above the cell) are small, while 
the profile of  the average velocity in the exterior part of the shear layer is analogous to the Hertler classical 
turbulent profile for planar mixing layers. It should be noted that the experiments were carried out for two 
boundary-layer thicknesses of 0.04 and 0.1 in the incoming flow determined at a distance of 1.1 from the sharp 
ed,,e~ upstream. 

3. Numerical modeling of the flow of an incompressible viscous fluid in a channel with a circular 
cavern is considered within the framework of a two-dimensional approach based on finite-volume solution of 
Reynolds equations that are dosed using two-parameter turbulence models. As the latter, one uses a high- 
Reynolds dissipative k-e model that is popular in the practice of engineering calculations and Menter 's low- 
Reynolds k-e  SST model, which showed good performance as applied to typical wall flows, including flows 
with flow separation. In the indicated model of  Menter [9, 10], k-03 equations of  the Saffman-Wilcocks low- 
Reynolds model are solved only inside the boundary layer, while the standard k -e  model is used in all the 
remaining zones of  the flow. Menter transformed the standard k-e model into a k-o) form and introduced a 
weight function FI that is equal to unity inside the region and decreases gradually to zero as the edge of the 
boundary layer is approached. The resultant equations for k and co are represented in the form 

Dt - ~ii. Ox j I -  ~*pmk + ~ I a + ~k gt , 

Dp03 7 bui ,, a [( b¢o'~'] 
Ot v t 0a) g + O°~ N + 

1 0k 303 
+ 2 ( 1 - F l) Pco~2 

The constants q0 of the new model are calculated from sets of the constants q~ and q02 in the following manner: 

q0=Flq01 +q)2(l - F  0 .  

For the first system of equations (according to Wilcocks): O'kl = 0.85; 6c01 = 0.5; al = 0.31; [31 = 0.0750; [3* = 
0.09; ~: = 0.41; 
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2 * = [B /IB* - 

The constants o f  the second system of  equations (the standard k -e  model) are: Ok2 = 0.5; o~2 = 0.5; [32 = 

0.0750; 13' = 0.09; ~c = 0.41; 

Y2 -'-" ~2/[ ~* -- O'm2 t~2/@--" 

He re 

(a., a,,j 2a.  )_3 z_ "C(J = ~tt I--OxJ + ~O.t). 30X k 8iJ PkSu Fl = tanh (arg 4) ; 

= max - -  ; -"  ], 
arg I rain [ 0.09coy y'm )' CD~.~v-J 

where v is the distance to the surface; CDko is the posit ive part of  the cross diffusion terms in the equat ion of  

co transfer, 

1 Ok Oco } 
CDko = max 29o~2 co Oxj 3:~i 10-2° 

The term arg~ obviously tends to zero with distance f rom the solid wall, since express ions  of  the type 1 /y  and 
1/3, 2 are present in all its components.  Inside the boundary layer, the first term is the ratio of the turbulence 
scale to the distance from the wall and is equal to 2.5 in the logarithmic layer and disappears  as the boundary  

of  the layer is approached. The second term points at Fi being equal to unity within the sublayer (i.e., at Ft 
precluding the use of  a two-parameter dissipative turbulence model); here, co behaves  a s  1/3 ,2 near the wall  and 
is proportional to l / y  in the logarithmic zone, so 1](.720)) is a constant in the vicinity o f  the wall and tends to 

zero in the logarithmic zone. The third argument assures arg~ tending to zero by b locking  the dependence of  
the solution on the external-flow parameters. Since argl --~ 0 on the edge of  the boundary  layer, Fl becomes  
such that a standard high-Reynolds dissipative two-parameter  model is employed in this zone. 

We recommend employing the tbllowing parameters  in the free flow: 

U~ 
01~=(1 ----> 10)-~-f-; Vt~= 10-(2~51V~; k _ = v t ~ c o  ~ , 

where L= is the tentative length of the computational domain.  
The boundary condition tbr co on the solid wall (y = 0) is 

6v 
co= 1 0 - -  

[31 (Ay) 2 '  

where Av is the wall step. This condition is acceptable for smooth walls Ay+< 3. 
The turbulent-viscosity factor is determined as 

V t 
ark 

max (alco ; ~ F2) ' 

F 2 = tanh (argO), arg 2 = max 2 x/k/(0.09~v) ; 5.___y_v . 
YCOJ 
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Fig. 2. Comparison of the flow patterns in a channel with a circular cav- 

ern obtained with a high-Reynolds two-parameter dissipative turbulence 
model (a) and Menter's low-Reynolds model (b) and the profiles of the 

longitudinal velocity component in the middle cross section of the cavern 

(c): 1) curve obtained based on the use of Menter's model; 2) data of cal- 
culations by the k-e turbulence model. 

The details of  an implicit finite-volume computational procedure that is based on the concept of split- 
ting by physical processes and a multiblock grid strategy are presented in [4, i l] .  

The steady turbulent flow of an incompressible viscous fluid in a plane-parallel channel of length 10 

with a circular cavern, whose sharp edge is a distance of 4.5 from the inlet section, is calculated for a 
Reynolds number of 1.3.105. At the inlet to the channel, we prescribe a uniform velocity profile in the flow 

core and a "1/7" profile in the wall zones that develops in a boundary layer of prescribed thickness (Sbl- The 

inlet characteristics of turbulence correspond to the conditions of the physical experiment carried out. On the 
channel and cavern walls, we set an adhesion condition using Menter's low-Reynolds turbulence model or we 

use the apparatus of  wall functions in the case of the high-Reynolds dissipative k-E model [7]. At the outlet 

from the channel, we employ "mild" boundary conditions or the conditions of continuation of the solution. The 
boundary-layer thickness at the inlet to the channel is varied from 0 to 0.16 in the course of  the numerical 

investigations. 

The multiblock computational grid includes a rectangular grid in the channel proper that contains 81 
x 61 nodes with bunching in the wall zones and in the vicinity of the sharp edges and a cylindrical grid in the 

circular cavern with a uniform distribution of the nodes in the circumferential direction (31 nodes on the arc 

outside the cavern) and a nonunitbrm distribution with bunching as the wall is approached (41 nodes in the 
radial direction). The wall steps are prescribed to be 10 -3. A "patch" - a 0.45 x 0.45 square grid that contains 

21 x 21 nodes - is superimposed on the central zone of the cavern at the site of location of the axis of the 

cylindrical grid (Fig. lb). 
4. Figures 2-4 present some of the numerical and experimental results obtained. 

To check the adequacy of the numerical predictions, we performed a comparative analysis of the re- 

sults of calculating the flow in a channel with a circular cavern based on employment of the high-Reynolds 
version of the two-parameter dissipative model and Menter's low-Reynolds two-parameter model. It should be 

noted that in the first case the problem is solved on a coarser computational grid owing to the use of the 

apparatus of wall functions. Thus, the number of computational nodes is decreased to 41 in the cross section 

of the channel and to 3 l in the radial direction of the cylindrical grid in the circular cavern, the wall step of 
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Fig. 3. Comparative analysis of calculational (curves) and experimental 
(points) results in the middle cross section of the cavern: profiles of  the 
longitudinal velocity component for a boundary-layer thickness 6bl = 0.04 
(a) and 0.10 (b) in the channel cross section x = -1.06, distributions of  
the reduced static pressure p (c) and the vorticity (d); c and d correspond 

to 3bl = 0.1. 

the grid being increased to 5. l0 -3 in the channel and to 9.10 -3 in the cavern. It should be noted that at the inlet 
to the channel we prescribed a profile with a very thin (of the order of 0.01) boundary layer in the variants 

considered. 
Comparison of the results in Fig. 2 shows absence of  an effect of the selected turbulence model on the 

solution, which indicates to a certain extent the correctness of the performed numerical modeling of the circu- 
lating flow in the cavern. 

In the circular cavern, a very intense (with a velocity of  about 0.45) circulating flow is realized whose 
structure is quite in agreement with the smoke-visualized pattern shown in Fig. la. The existence of  the secon- 
dary vortices noted in the cavern in the numerical modeling (Fig. 2a and b) seemingly was quite attributable 

to the difference in the boundary-layer thickness at the inlet to the channel in the calculations (0.01) and the 
experiment (0.1). However  the above vortex structure is also retained at ~bl = 0.1,  and therefore the occurrence 
of the secondary vortices is associated rather with the two-dimensional character of the calculated flow. The 
center of  the large-scale vortex is located in the middle cross section in the immediate vicinity of  the center of 
gravity of  the circular cavern (y = -0.395), which also correlates well with the experimental data (y = ---0.38). 
We note that the geometric center of the cavern is somewhat above at a point with the coordinates (x = 0.5; y 

= -0.29). Another interesting feature is noteworthy: the streamline that separates the channel flow and the 
large-scale vortex flow of the fluid and practically connects the cavern's sharp edges has some convexity to- 
ward the external flow, which is quite in agreement with the pattern of the separated flow of an ideal fluid in 

a channel with a rectangular trench [12]. 
The conclusion of  the adequacy of the numerical predictions performed based on the use of  Menter's 

turbulent model can also be drawn from a comparative analysis of the calculated and experimental data in Fig. 

3. For this purpose, we select a wide variety of local characteristics of the flow: the longitudinal velocity com- 
ponent, reduced static pressure, and vorticity taken in the middle cross section of the circular cavern. The re- 
duced static pressure is determined as ,~ = (p -Pm)/(Pc -Pro), where p is the static pressure at the center of the 
large-scale vortex and Pc is the pressure in the middle of the channel (x = 0.5; y = 0.5; z = 0). 

We note the quite satisfactory agreement between the calculated and experimental data, especially as 
regards the profiles of  the longitudinal velocity component in the middle cross section of the cavern. The dis- 
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Fig. 4. Numerical analysis of the effect of  the boundary-layer thickness at 
the inlet to the channel (x = 4.5) on the return-flow velocity that is maxi- 
mum in absolute value (a) (the dark points are the experimental data), on 
the maximum of the longitudinal velocity component in the middle cross 

section of the cavern (b), and on the maximum of the current function (c). 

agreement occurring, which refers to a great extent to the static-pressure distribution at the center of the cav- 
ern, should be assigned to the difference of the spatial character of the flow in the experimental analog from 

the character of  the model two-dimensional flow. 
We should note the good agreement between the calculated and experimental data on the vorticity in 

the core of the large-scale vortex flow in the cavern. It is of  interest that the existence of a zone of  practically 
constant vorticity in the cavern correlates well with the well-known model of J. Batchelor [5, 7], in accordance 
with which an ideal vortex of constant vorticity surrounded by a thin boundary layer is realized in the cavern 
when Re ~ ~.  By and large the calculations confirmed the validity of the indicated concept, the more so that 
the evaluation of the characteristics of  turbulence and, in particular, the vortex viscosity indicates their ex- 

tremely low level in the vortex-flow core. 
The last block of calculated data of  Fig. 4 is concerned with the effect of the boundary-layer thickness 

in the incoming flow on extremum, local, and integral characteristics of the flow. Although the vortex pattern 

remains practically constant in the considered range of variation of 8bl, the intensity of the return flow in the 
cavern becomes noticeably weaker as the boundary-layer thickness increases. The decrease observed in the 
maximum velocity of  the channel flow can easily be explained by the decrease in the convexity of  the separat- 
ing streamline, which approaches a straight line connecting the sharp edges of the cavern. 

The authors are grateful to Academician G. G. Chemyi for useful discussions of  the problem. 
The work was carried out with financial support from the Russian Fund for Fundamental Research, 

projects Nos. 99-01-01115 and 99-01-00722. 

N O T A T I O N  

xi, longitudinal, vertical, and transverse Cartesian coordinates (x, y, z) for i = 1, 2, 3, respectively; ui, 
longitudinal, vertical, and transverse velocity components (u, v, w) tbr i = 1, 2, 3, respectively; p, density; p- 
and v, dynamic and kinematic viscosity of  the medium (v -- g / 9 ) ;  P, static pressure; ~, reduced static pressure, 

= (P - Pm)/(Pc -- Pro); H, channel height; l, channel width; L, distance between the sharp edges in the plane of 
the lower channel wall; U, flow velocity at the inlet to the channel; t, time that is made dimensionless by 
means of U and L; ~,  current function; Re, Reynolds number determined from the air density and viscosity, U 
and L; ~l ,  boundary-layer thickness; ~ ,  absolute value of the vorticity; k, kinetic energy of turbulent pulsa- 
tions; e, dissipation rate of turbulent energy; co, specific dissipation of turbulent kinetic energy; CDkco, positive 
part of the cross diffusion terms in the equation of co transfer; P-t, turbulent dynamic viscosity; vt, turbulent 
kinematic viscosity (vt = p-/p); F1 and F2, auxiliary functions; %, surface-friction tension; "c 6, components of  
the friction tensor; Ay, wall step; Ay +, dimensionless wall step (Ay + = ~]%/9A.v/v);  5~/, Kronecker tensor; K, 
von Karman constant; ~, [~*, y, ~h., and cho, constants of the turbulence models; % generalized constant of the 
turbulence model; arg, argument in the auxiliary functions F; al, Bradshaw structural parameter. Subscripts: i, 
j = 1, 2, 3; ~ ,  flow parameters in the free flow; 1/2, flow parameters in the middle cross section of the cavern; 
max and min, maximum and minimum values. 
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